11.7: Elimination Reactions- Zaitsev's Rule (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    31511
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    Objective

    After completing this section, you should be able to apply Zaitsev’s rule to predict the major product in a base-induced elimination of an unsymmetrical halide.

    Key Terms

    Make certain that you can define, and use in context, the key term below.

    • Zaitsev’s rule

    When an alkyl halide is reacted with a nucleophile/Lewis base two major types of reaction can occur. Thus far in this chapter, we have discussed substitution reactions where a nucleophile displaces a leaving group at the electrophilic carbon of a substrate. Alternatively, the nucleophile could act as a Lewis base and cause an elimination reaction by removing a hydrogen adjacent to the leaving group. These reaction are similar and are often in competition with each other.

    11.7: Elimination Reactions- Zaitsev's Rule (1)

    Introduction

    The prefix "regio" indicates the interaction of reactants during bond making and/or bond breaking occurs preferentially by one orientation. If two or more structurally distinct groups of adjacent hydrogens are present in a given reactant, then multiple constitutionally isomeric alkenes may be formed by an elimination. Zaitsev’s rule is an empirical rule used to predict the major products of elimination reactions. It states that in an elimination reaction the major product is the more stable alkene with the more highly substituted double bond. This situation is illustrated by the 2-bromobutane and 2-bromo-2,3-dimethylbutane elimination examples given below.

    11.7: Elimination Reactions- Zaitsev's Rule (2)

    11.7: Elimination Reactions- Zaitsev's Rule (3)

    By using the strong base hydroxide, we direct these reactions toward elimination (rather than substitution). In both cases there are two different sets of adjacent hydrogens available to the elimination reaction (these are colored blueand magenta). If the rate of each possible elimination was the same, we might expect the amounts of the isomeric elimination products to reflect the number of hydrogens that could participate in that reaction. For example, since there are three 1°-hydrogens (magenta) and two 2°-hydrogens (blue) on beta-carbons in 2-bromobutane, statistics would suggest a 3:2 ratio of 1-butene and 2-butene in the products. This is not observed, and the latter predominates by 4:1. This departure from statistical expectation is even more pronounced in the second example, where there are six adjacent 1°hydrogens(magenta) compared with one 3°-hydrogen (blue). These results point to a strong favoring the more highly substituted product double bond predicted by Zaitsev's Rule.

    The E1, E2, and E1cB Reactions

    Elimination reaction take place by three common mechanism, E1, E2, and E1cB, all of which break the H-C and X-C bonds at different points of their mechanism. In addition, the different mechanisms will have subtle effects on the reaction products which will be discussed later in this chapter.

    E1 Mechanism

    This mechanism starts the breaking of the C-X to provide a carbocation intermediate. A base removes a hydrogen adjacent to the original electrophilic carbon. The electrons from the broken H-C bond move to form the pi bond of the alkene. In much the same fashion as the SN1 mechanism, the first step of the mechanism is slow making it the rate determining step. This means that the reaction kinetics are unimolecular and first-order with respect to the substrate.

    11.7: Elimination Reactions- Zaitsev's Rule (4)

    E2 Mechanism

    The E2 mechanism takes place in a single concerted step. The rate at which this mechanism occurs follows second order kinetics, and depends on the concentration of both the base and alkyl halide. The base removes a hydrogen from a carbon adjacent to the leaving group. The electrons of the broken H-C move to form the pi bond of the alkene. In doing this the C-X bond is broken causing the removal of the leaving group.

    11.7: Elimination Reactions- Zaitsev's Rule (5)

    E1cB Mechanism

    The E1cB mechanism starts with the base deprotonating a hydrogen adjacent to the leaving to form a carbanion. In the second step of the mechanism the lone pair electrons of the carbanion move to become the pi bond of the alkene. This causes the C-X bond to break and the leaving group to be removed.

    11.7: Elimination Reactions- Zaitsev's Rule (6)

    Predicting the Products of an Elimination Reaction

    For most elimination reactions, the formation of the product involves the breaking of a C-X bond from the electrophilic carbon, the breaking of a C-H bond from a carbon adjacent to the electrophilic carbon, and the formation of a pi bond between these two carbons. Which elimination mechanism is being followed has little effect on these steps. The limitations of each elimination mechanism will be discussed later in this chapter.

    To determining the possible products, it is vital to first identify the electrophilic carbon in the substrate. Next identify all hydrogens on carbons directly adjacent to the electrophilic carbon. Each unique adjacent hydrogen has the possibility of forming a unique elimination product. Break a C-H bond from each unique group of adjacent hydrogens then break the C-X bond. Finally connect the adjacent carbon and the electrophilic carbon with a double bond. Repeat this process for each unique group of adjacent hydrogens. Finally, compare all of the possible elimination products. The product whose double bond has the most alkyl substituents will most likely be the preferred product.

    Worked Example \(\PageIndex{1}\)

    What would be the expected products of the following reaction? Which would be expected to be the major product?

    11.7: Elimination Reactions- Zaitsev's Rule (7)

    Solution

    To solve this problem, first find the electrophilic carbon in the starting compound. This carbon is directly attached to the chlorine leaving groups and is shown in blue in the structure below. Next, identify all unique groups of hydrogens on carbons directly adjacent to the electrophilic carbon. In the starting compound, there are two distinct groups of hydrogens which can create a unique elimination product if removed. They are shown as magentaand green in the structure below.

    11.7: Elimination Reactions- Zaitsev's Rule (8)

    Create the possible elimination product by breaking a C-H bond from each unique group of adjacent hydrogens then breaking the C-Cl bond. Then connect the adjacent carbon and the electrophilic carbon with a double bond to create an alkene elimination product. Repeat this process for each unique group of adjacent hydrogens. Because the starting compound in this example has two unique groups of adjacent hydrogens, two elimination products can possibly be made.

    Product 1

    11.7: Elimination Reactions- Zaitsev's Rule (9)

    Product 2

    11.7: Elimination Reactions- Zaitsev's Rule (10)

    Finally, compare the possible elimination products to determine which has the most alkyl substituents. This product will most likely be the preferred. For this example product 1 has three alkyl substituents and product 2 has only two. This means product 1 will likely be the preferred product of the reaction.

    11.7: Elimination Reactions- Zaitsev's Rule (11)

    Exercise \(\PageIndex{1}\)

    1) Ignoring the alkene stereochemistry show the elimination product(s) of the following compounds:

    11.7: Elimination Reactions- Zaitsev's Rule (12)

    2) Predict the major products of the following reactions.

    11.7: Elimination Reactions- Zaitsev's Rule (13)

    Answer

    1)
    11.7: Elimination Reactions- Zaitsev's Rule (14)

    2)

    11.7: Elimination Reactions- Zaitsev's Rule (15)

    11.7: Elimination Reactions- Zaitsev's Rule (2024)
    Top Articles
    Sloppy Joe Chaffle Recipe
    Pressure cooker Chicken Puttanesca Recipe
    5 Fastest Ways To Become Rich by Investing in the Stock Market
    Subfinder Online
    Petco Clinic Hours
    Barber Gym Quantico Hours
    Fnv Mr Cuddles
    Ups Cc Center
    Flag Mashup Bot
    United Center: Home of the Chicago Bulls & Chicago Blackhawks - The Stadiums Guide
    Milk And Mocha Bear Gifs
    Farmers And Merchants Bank Broadway Va
    Bullocks Grocery Weekly Ad
    Babylon Alligator
    Inside the Rise and Fall of Toys ‘R’ Us | HISTORY
    Ksat Doppler Radar
    Fd Photo Studio New York
    Cyclefish 2023
    Harvestella Sprinkler Lvl 2
    Kodiak C4500 For Sale On Craigslist
    Contenidos del nivel A2
    What Time Does The Moon Rise At My Location
    suggest - Englisch-Deutsch Übersetzung | PONS
    Central Nj Craiglist
    Auto-Mataru
    Gw2 Titles
    Where Is Gobblestone Castle
    David Goggins Is A Fraud
    Freeman Funeral Home Chapmanville Wv Obits
    Greet In Cheshire Crossword Clue
    Webmail.unt.edu
    Quattrocento, Italienische Kunst des 15. Jahrhunderts
    Dr Yakubu Riverview
    Methstreams Boxing Live
    Craigslist Palm Desert California
    Craigslist Musicians Phoenix
    Marie Anne Thiebaud 2019
    Rwby Crossover Fanfiction Archive
    Craigslist Farm And Garden Yakima
    Chalkies | Gutgash's Territory - maps - Mad Max Game Guide
    Hourly Weather Forecast for Amsterdam, North Holland, Netherlands - The Weather Channel | Weather.com
    Ssndob Cm
    Pulp Fiction 123Movies
    'It's huge': Will Louisville's Logan Street be the next Findlay or Pike Place market?
    Fast X Showtimes Near Regal Spartan
    The many times it was so much worse
    Agurahl The Butcher Wow
    World of Warcraft Battle for Azeroth: La Última Expansión de la Saga - EjemplosWeb
    Savor Some Southern Tradition With Crispy Deep-Fried Chitterlings
    Captain Phillips Full Movie Free
    Redbox Walmart Near Me
    Opsahl Kostel Funeral Home & Crematory Yankton
    Latest Posts
    Article information

    Author: Dan Stracke

    Last Updated:

    Views: 6406

    Rating: 4.2 / 5 (43 voted)

    Reviews: 82% of readers found this page helpful

    Author information

    Name: Dan Stracke

    Birthday: 1992-08-25

    Address: 2253 Brown Springs, East Alla, OH 38634-0309

    Phone: +398735162064

    Job: Investor Government Associate

    Hobby: Shopping, LARPing, Scrapbooking, Surfing, Slacklining, Dance, Glassblowing

    Introduction: My name is Dan Stracke, I am a homely, gleaming, glamorous, inquisitive, homely, gorgeous, light person who loves writing and wants to share my knowledge and understanding with you.