Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review (2024)

1. Arunanondchai P., Fei C., Fisher A., McCarl B.A., Wang W., Yang Y. The Routledge Handbook of Agricultural Economics. Routledge; Abingdon-on-Thames, UK: 2018. How does climate change affect agriculture. [Google Scholar]

2. Noya I., González-García S., Bacenetti J., Fiala M., Moreira M.T. Environmental impacts of the cultivation-phase associated with agricultural crops for feed production. J. Clean. Prod. 2018;172:3721–3733. doi:10.1016/j.jclepro.2017.07.132. [CrossRef] [Google Scholar]

3. Vaughan M.M., Block A., Christensen S.A., Allen L.H., Schmelz E.A. The effects of climate change associated abiotic stresses on maize phytochemical defenses. Phytochem. Rev. 2018;17:37–49. doi:10.1007/s11101-017-9508-2. [CrossRef] [Google Scholar]

4. FAO. UNICEF. WFP. WHO . The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security. Food and Agriculture Organization of the United Nations (FAO); Rome, Italy: 2018. [Google Scholar]

5. Rosenzweig C., Elliott J., Deryng D., Ruane A.C., Müller C., Arneth A., Boote K.J., Folberth C., Glotter M., Khabarov N. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA. 2014;111:3268–3273. doi:10.1073/pnas.1222463110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Wheeler T., Von Braun J. Climate change impacts on global food security. Science. 2013;341:508–513. doi:10.1126/science.1239402. [PubMed] [CrossRef] [Google Scholar]

7. Ashraf M.A., Akbar A., Askari S.H., Iqbal M., Rasheed R., Hussain I. Advances in Seed Priming. Springer; Berlin/Heidelberg, Germany: 2018. Recent Advances in Abiotic Stress Tolerance of Plants Through Chemical Priming: An Overview; pp. 51–79. [Google Scholar]

8. Benevenuto R.F., Agapito-Tenfen S.Z., Vilperte V., Wikmark O.-G., Van Rensburg P.J., Nodari R.O. Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLoS ONE. 2017;12:e0173069. doi:10.1371/journal.pone.0173069. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Suzuki N., Rivero R.M., Shulaev V., Blumwald E., Mittler R. Abiotic and biotic stress combinations. New Phytol. 2014;203:32–43. doi:10.1111/nph.12797. [PubMed] [CrossRef] [Google Scholar]

10. Pachauri R.K., Allen M.R., Barros V.R., Broome J., Cramer W., Christ R., Church J.A., Clarke L., Dahe Q., Dasgupta P. Climate Change 2014: Synthesis Report. IPCC; Geneva, Switzerland: 2014. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Google Scholar]

11. Khan A., Ijaz M., Muhammad J., Goheer A., Akbar G., Adnan M. Climate Change Implications for Wheat Crop in Dera Ismail Khan District of Khyber Pakhtunkhwa. Pak. J. Meteorol. 2016;13:17–27. [Google Scholar]

12. Kanojia A., Dijkwel P.P. Abiotic Stress Responses are Governed by Reactive Oxygen Species and Age. Annu. Plant Rev. 2018:1–32. doi:10.1002/9781119312994.apr0611. [CrossRef] [Google Scholar]

13. Lesk C., Rowhani P., Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529:84. doi:10.1038/nature16467. [PubMed] [CrossRef] [Google Scholar]

14. Altieri M.A., Nicholls C.I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Chang. 2017;140:33–45. doi:10.1007/s10584-013-0909-y. [CrossRef] [Google Scholar]

15. Richardson K.J., Lewis K.H., Krishnamurthy P.K., Kent C., Wiltshire A.J., Hanlon H.M. Food security outcomes under a changing climate: Impacts of mitigation and adaptaion on vulnerablity to food insecurity. Clim. Chang. 2018;147:327–341. doi:10.1007/s10584-018-2137-y. [CrossRef] [Google Scholar]

16. Ito R., Vasconcelos H.L., Feeley K.J. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Glob. Chang. Biol. 2018;24:e592–e602. [PubMed] [Google Scholar]

17. Rogelj J., Den Elzen M., Höhne N., Fransen T., Fekete H., Winkler H., Schaeffer R., Sha F., Riahi K., Meinshausen M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature. 2016;534:631. doi:10.1038/nature18307. [PubMed] [CrossRef] [Google Scholar]

18. FAOSTAT. [(accessed on 2 August 2017)];2017 Available online: http://www.fao.org/faostat/en/#data

19. Reckling M., Döring T.F., Bergkvist G., Chmielewski F., Stoddard F., Watson C., Seddig S., Bachinger J. Grain legume yield instability has increased over 60 years in long-term field experiments as measured by a scale-adjusted coefficient of variation. Asp. Appl. Biol. 2018;138:15–20. [Google Scholar]

20. Dhankher O.P., Foyer C.H. Climate resilient crops for improving global food security and safety. Plant Cell Environ. 2018;41:877–884. doi:10.1111/pce.13207. [PubMed] [CrossRef] [Google Scholar]

21. Kang Y., Khan S., Ma X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. 2009;19:1665–1674. doi:10.1016/j.pnsc.2009.08.001. [CrossRef] [Google Scholar]

22. Campbell B.M., Vermeulen S.J., Aggarwal P.K., Corner-Dolloff C., Girvetz E., Loboguerrero A.M., Ramirez-Villegas J., Rosenstock T., Sebastian L., Thornton P.K. Reducing risks to food security from climate change. Glob. Food Sec. 2016;11:34–43. doi:10.1016/j.gfs.2016.06.002. [CrossRef] [Google Scholar]

23. Thornton P.K., Ericksen P.J., Herrero M., Challinor A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014;20:3313–3328. doi:10.1111/gcb.12581. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. FAO. IFAD. UNICEF. WEP. WHO . The State of Food Security and Nutrition in the World 2018. FAO; Rome, Italy: Building climate resilience for food security and nutrition. [Google Scholar]

25. Emergency Events Database (EM-DAT) [(accessed on 30 January 2019)];2009 Available online: https://www.emdat.be/

26. Boyer J.S. Plant productivity and environment. Science. 1982;218:443–448. doi:10.1126/science.218.4571.443. [PubMed] [CrossRef] [Google Scholar]

27. Van Velthuizen H. Mapping Biophysical Factors That Influence Agricultural Production and Rural Vulnerability. Food & Agriculture Organization; Rome, Italy: 2007. [Google Scholar]

28. Tebaldi C., Lobell D. Estimated impacts of emission reductions on wheat and maize crops. Clim. Chang. 2018;146:533–545. doi:10.1007/s10584-015-1537-5. [CrossRef] [Google Scholar]

29. Bonan G.B., Doney S.C. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science. 2018;359:eaam8328. doi:10.1126/science.aam8328. [PubMed] [CrossRef] [Google Scholar]

30. Olesen J.E., Trnka M., Kersebaum K.C., Skjelvåg A., Seguin B., Peltonen-Sainio P., Rossi F., Kozyra J., Micale F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011;34:96–112. doi:10.1016/j.eja.2010.11.003. [CrossRef] [Google Scholar]

31. Olesen J.E., Bindi M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002;16:239–262. doi:10.1016/S1161-0301(02)00004-7. [CrossRef] [Google Scholar]

32. Asseng S., Ewert F., Martre P., Rötter R.P., Lobell D., Cammarano D., Kimball B., Ottman M., Wall G., White J.W. Rising temperatures reduce global wheat production. Nat. Clim. Change. 2015;5:143. doi:10.1038/nclimate2470. [CrossRef] [Google Scholar]

33. Barnabás B., Jäger K., Fehér A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008;31:11–38. doi:10.1111/j.1365-3040.2007.01727.x. [PubMed] [CrossRef] [Google Scholar]

34. Griffin J.J., Ranney T.G., Pharr D.M. Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis) J. Am. Soc. Hortic. Sci. 2004;129:497–502. [Google Scholar]

35. Gong M., Chen S.-N., Song Y.-Q., Li Z.-G. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Funct. Plant Biol. 1997;24:371–379. doi:10.1071/PP96118. [CrossRef] [Google Scholar]

36. Wang Z., Huang B. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Sci. 2004;44:1729–1736. doi:10.2135/cropsci2004.1729. [CrossRef] [Google Scholar]

37. Xu Z.Z., Zhou G.S. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta. 2006;224:1080–1090. doi:10.1007/s00425-006-0281-5. [PubMed] [CrossRef] [Google Scholar]

38. Winkel T., Renno J.-F., Payne W. Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown in Sahelian conditions. J. Exp. Bot. 1997;48:1001–1009. doi:10.1093/jxb/48.5.1001. [CrossRef] [Google Scholar]

39. Saini H., Aspinall D. Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Ann. Bot. 1982;49:835–846. doi:10.1093/oxfordjournals.aob.a086310. [CrossRef] [Google Scholar]

40. Saini H., Aspinall D. Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.) Ann. Bot. 1981;48:623–633. doi:10.1093/oxfordjournals.aob.a086170. [CrossRef] [Google Scholar]

41. Sheoran I.S., Saini H.S. Drought-induced male sterility in rice: Changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex. Plant Reprod. 1996;9:161–169. doi:10.1007/BF02221396. [CrossRef] [Google Scholar]

42. Garrity D., O’Toole J. Screening rice for drought resistance at the reproductive phase. Field Crops Res. 1994;39:99–110. doi:10.1016/0378-4290(94)90012-4. [CrossRef] [Google Scholar]

43. Ruf F., Schroth G., Doffangui K. Climate change, cocoa migrations and deforestation in West Africa: What does the past tell us about the future? Sustain. Sci. 2015;10:101–111. doi:10.1007/s11625-014-0282-4. [CrossRef] [Google Scholar]

44. Hellin J., Bellon M.R., Hearne S.J. Maize landraces and adaptation to climate change in Mexico. J. Crop Improv. 2014;28:484–501. doi:10.1080/15427528.2014.921800. [CrossRef] [Google Scholar]

45. Svoboda N., Strer M., Hufnagel J. Rainfed winter wheat cultivation in the North German Plain will be water limited under climate change until 2070. Environ. Sci. Eur. 2015;27:29. doi:10.1186/s12302-015-0061-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Zhao C., Liu B., Piao S., Wang X., Lobell D.B., Huang Y., Huang M., Yao Y., Bassu S., Ciais P. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA. 2017;114:9326–9331. doi:10.1073/pnas.1701762114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Scheben A., Yuan Y., Edwards D. Advances in genomics for adapting crops to climate change. Curr. Plant Biol. 2016;6:2–10. doi:10.1016/j.cpb.2016.09.001. [CrossRef] [Google Scholar]

48. Pradhan G.P., Prasad P.V., Fritz A.K., Kirkham M.B., Gill B.S. Effects of drought and high temperature stress on synthetic hexaploid wheat. Funct. Plant Biol. 2012;39:190–198. doi:10.1071/FP11245. [PubMed] [CrossRef] [Google Scholar]

49. Araus J., Slafer G., Reynolds M., Royo C. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 2002;89:925–940. doi:10.1093/aob/mcf049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. De Oliveira E.D., Bramley H., Siddique K.H., Henty S., Berger J., Palta J.A. Can elevated CO2 combined with high temperature ameliorate the effect of terminal drought in wheat? Funct. Plant Biol. 2013;40:160–171. doi:10.1071/FP12206. [PubMed] [CrossRef] [Google Scholar]

51. Baroowa B., Gogoi N. Biochemical changes in black gram and green gram genotypes after imposition of drought stress. J. Food Legum. 2014;27:350–353. [Google Scholar]

52. Maleki A., Naderi A., Naseri R., Fathi A., Bahamin S., Maleki R. Physiological performance of soybean cultivars under drought stress. Bull. Environ. Pharmacol. Life Sci. 2013;2:38–44. [Google Scholar]

53. Schlenker W., Roberts M.J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA. 2009;106:15594–15598. doi:10.1073/pnas.0906865106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Lobell D.B., Bänziger M., Magorokosho C., Vivek B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011;1:42. doi:10.1038/nclimate1043. [CrossRef] [Google Scholar]

55. Lobell D.B., Field C.B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007;2:014002. doi:10.1088/1748-9326/2/1/014002. [CrossRef] [Google Scholar]

56. Brown L.R. Plan B 3.0: Mobilizing to Save Civilization (Substantially Revised) WW Norton & Company; New York, NY, USA: 2008. [Google Scholar]

57. Ray D.K., Gerber J.S., MacDonald G.K., West P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015;6:5989. doi:10.1038/ncomms6989. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Easterling W.E., Aggarwal P.K., Batima P., Brander K.M., Erda L., Howden S.M., Kirilenko A., Morton J., Soussana J.-F., Schmidhuber J. Food, fibre and forest products. Clim. Chang. 2007;273:313. [Google Scholar]

59. Kjellstrom E., Nikulin G., Strandberg G., Christensen O.B., Jacob D., Keuler K., Lenderink G., Van Meijgaard E., Schar C., Somot S., et al. European climate change at global mean temperature increases of 1.5 and 2 degrees above pre-industrail conditions as simulated by the EURO-CORDEX regional climate models. Earth. Syst. Dyn. 2018;9:459–478. doi:10.5194/esd-9-459-2018. [CrossRef] [Google Scholar]

60. Otto I.M., Reckien D., Reyer C.P., Marcus R., Le Masson V., Jones L., Norton A., Serdeczny O. Social vulnerability to climate change: A review of concepts and evidence. Reg. Environ. Chang. 2017;17:1651–1662. doi:10.1007/s10113-017-1105-9. [CrossRef] [Google Scholar]

61. Eastburn D.M., Degennaro M.M., Delucia E.H., Dermody O., McElrone A.J. Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Glob. Chang. Biol. 2010;16:320–330. doi:10.1111/j.1365-2486.2009.01978.x. [CrossRef] [Google Scholar]

62. Kitano H. Systems biology: A brief overview. Science. 2002;295:1662–1664. doi:10.1126/science.1069492. [PubMed] [CrossRef] [Google Scholar]

63. Intergovernmental Panel on Climate Change (IPCC) Climate Change: Impacts, Adaptation, and Vulnerability. Cambridge University Press; Cambridge, UK: 2007. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Google Scholar]

64. Schmidhuber J., Tubiello F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA. 2007;104:19703–19708. doi:10.1073/pnas.0701976104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios. Cambridge University Press; Cambridge, UK: 2000. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. [Google Scholar]

66. Espeland E.K., Kettenring K.M. Strategic plant choices can alleviate climate change impacts: A review. J. Environ. Manag. 2018;222:316–324. doi:10.1016/j.jenvman.2018.05.042. [PubMed] [CrossRef] [Google Scholar]

67. Pereira A. Plant abiotic stress challenges from the changing environment. Front. Plant Sci. 2016;7:1123. doi:10.3389/fpls.2016.01123. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Hatfield J.L., Prueger J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015;10:4–10. doi:10.1016/j.wace.2015.08.001. [CrossRef] [Google Scholar]

69. Barlow K., Christy B., O’leary G., Riffkin P., Nuttall J. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Res. 2015;171:109–119. doi:10.1016/j.fcr.2014.11.010. [CrossRef] [Google Scholar]

70. Salehi-Lisar S.Y., Bakhshayeshan-Agdam H. Drought Stress Tolerance in Plants. Volume 1. Springer; Berlin/Heidelberg, Germany: 2016. Drought stress in plants: Causes, consequences, and tolerance; pp. 1–16. [Google Scholar]

71. Zandalinas S.I., Mittler R., Balfa*gón D., Arbona V., Gómez-Cadenas A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018;162:2–12. doi:10.1111/ppl.12540. [PubMed] [CrossRef] [Google Scholar]

72. Singh P., Basu S., Kumar G. Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. Elsevier; Amsterdam, The Netherlands: 2018. Polyamines Metabolism: A Way Ahead for Abiotic Stress Tolerance in Crop Plants; pp. 39–55. [Google Scholar]

73. Tack J., Barkley A., Nalley L.L. Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. USA. 2015 doi:10.1073/pnas.1415181112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. FAO, FAOSTAT Food Agriculture. Organization. United Nations. [(accessed on 15 October 2017)];2017 Available online: http://www.fao.org/faostat/en/#home

75. Abhinandan K., Skori L., Stanic M., Hickerson N.M., Jamshed M., Samuel M.A. Abiotic Stress Signaling in Wheat—An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat. Front. Plant Sci. 2018;9:734. doi:10.3389/fpls.2018.00734. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Challinor A., Wheeler T., Craufurd P., Ferro C., Stephenson D. Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agric. Ecosyst. Environ. 2007;119:190–204. doi:10.1016/j.agee.2006.07.009. [CrossRef] [Google Scholar]

77. Zhu J.-K. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–324. doi:10.1016/j.cell.2016.08.029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Dinneny J.R., Long T.A., Wang J.Y., Jung J.W., Mace D., Pointer S., Barron C., Brady S.M., Schiefelbein J., Benfey P.N. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science. 2008;320:942–945. doi:10.1126/science.1153795. [PubMed] [CrossRef] [Google Scholar]

79. Carvalho L.C., Amâncio S. Cutting the Gordian Knot of abiotic stress in grapevine: From the test tube to climate change adaptation. Physiol. Plant. 2018 doi:10.1111/ppl.12857. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Ahmad Z., Anjum S., Waraich E.A., Ayub M.A., Ahmad T., Tariq R.M.S., Ahmad R., Iqbal M.A. Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress—A review. J. Plant Nutr. 2018;41:1734–1743. doi:10.1080/01904167.2018.1459688. [CrossRef] [Google Scholar]

81. Martinez V., Nieves-Cordones M., Lopez-Delacalle M., Rodenas R., Mestre T.C., Garcia-Sanchez F., Rubio F., Nortes P.A., Mittler R., Rivero R.M. Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules. 2018;23:535. doi:10.3390/molecules23030535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Rymaszewski W., Vile D., Bediee A., Dauzat M., Luchaire N., Kamrowska D., Granier C., Hennig J. Stress-related gene expression reflects morphophysiological responses to water deficit. Plant Physiol. 2017;174:1913–1930. doi:10.1104/pp.17.00318. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Wu X., Cai K., Zhang G., Zeng F. Metabolite profiling of barley grains subjected to water stress: To Explain the genotypic difference in drought-induced impacts on malting quality. Front. Plant Sci. 2017;8:1547. doi:10.3389/fpls.2017.01547. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Vincent D., Ergül A., Bohlman M.C., Tattersall E.A., Tillett R.L., Wheatley M.D., Woolsey R., Quilici D.R., Joets J., Schlauch K. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J. Exp. Bot. 2007;58:1873–1892. doi:10.1093/jxb/erm012. [PubMed] [CrossRef] [Google Scholar]

85. Liu J.-X., Howell S.H. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell. 2010;22:2930–2942. doi:10.1105/tpc.110.078154. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Menezes-Silva P.E., Sanglard L.M., Ávila R.T., Morais L.E., Martins S.C., Nobres P., Patreze C.M., Ferreira M.A., Araújo W.L., Fernie A.R. Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. J. Exp. Bot. 2017;68:4309–4322. doi:10.1093/jxb/erx211. [PubMed] [CrossRef] [Google Scholar]

87. Becklin K.M., Anderson J.T., Gerhart L.M., Wadgymar S.M., Wessinger C.A., Ward J.K. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiol. 2016;172:635–649. doi:10.1104/pp.16.00793. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. DaMatta F.M., Grandis A., Arenque B.C., Buckeridge M.S. Impacts of climate changes on crop physiology and food quality. Food Res. Int. 2010;43:1814–1823. doi:10.1016/j.foodres.2009.11.001. [CrossRef] [Google Scholar]

89. Jan S.A., Shinwari Z.K., Rabbani M.A. Morpho-biochemical evaluation of Brassica rapa sub-species for salt tolerance. Genetika. 2016;48:323–338. doi:10.2298/GENSR1601323J. [CrossRef] [Google Scholar]

90. Tkemaladze G.S., Makhashvili K. Climate changes and photosynthesis. Ann. Agric. Sci. 2016;14:119–126. doi:10.1016/j.aasci.2016.05.012. [CrossRef] [Google Scholar]

91. Zargar S.M., Gupta N., Nazir M., Mahajan R., Malik F.A., Sofi N.R., Shikari A.B., Salgotra R. Impact of drought on photosynthesis: Molecular perspective. Plant Gene. 2017;11:154–159. doi:10.1016/j.plgene.2017.04.003. [CrossRef] [Google Scholar]

92. Khan A., Ali M., Siddiqui S.U., Jatoi S.A., Jan S.A., Khan N., Ghafoor A. Effect of Various Temperatures and Duration on Deterioration of Rice Seeds. Science. 2017;36:79–83. [Google Scholar]

93. Jan S.A., Bibi N., Shinwari Z.K., Rabbani M.A., Ullah S., Qadir A., Khan N. Impact of salt, drought, heat and frost stresses on morpho-biochemical and physiological properties of Brassica species: An updated review. J. Rural Dev. Agric. 2017;2:1–10. [Google Scholar]

94. Nagarajan R., Gill K.S. Evolution of Rubisco activase gene in plants. Plant Mol. Biol. 2018;96:69–87. doi:10.1007/s11103-017-0680-y. [PubMed] [CrossRef] [Google Scholar]

95. Sage R.F., Way D.A., Kubien D.S. Rubisco, Rubisco activase, and global climate change. J. Exp. Bot. 2008;59:1581–1595. doi:10.1093/jxb/ern053. [PubMed] [CrossRef] [Google Scholar]

96. Nasim S., Shabbir G., Ilyas M., Cheema N.M., Shah M.K.N. Contemplation of wheat genotypes for enhanced antioxidant enzyme activity. Pak. J. Bot. 2017;49:647–653. [Google Scholar]

97. Kurepin L.V., Ivanov A.G., Zaman M., Pharis R.P., Hurry V., Hüner N.P. Photosynthesis: Structures, Mechanisms, and Applications. Springer; Berlin/Heidelberg, Germany: 2017. Interaction of glycine betaine and plant hormones: Protection of the photosynthetic apparatus during abiotic stress; pp. 185–202. [Google Scholar]

98. Dong H., Bai L., Chang J., Song C.-P. Chloroplast protein PLGG1 is involved in abscisic acid-regulated lateral root development and stomatal movement in Arabidopsis. Biochem. Biophys. Res. Commun. 2018;495:280–285. doi:10.1016/j.bbrc.2017.10.113. [PubMed] [CrossRef] [Google Scholar]

99. Kuromori T., Seo M., Shinozaki K. ABA transport and plant water stress responses. Trends Plant Sci. 2018;23:513–522. doi:10.1016/j.tplants.2018.04.001. [PubMed] [CrossRef] [Google Scholar]

100. Takahashi F., Kuromori T., Sato H., Shinozaki K. Survival Strategies in Extreme Cold and Desiccation. Springer; Berlin/Heidelberg, Germany: 2018. Regulatory Gene Networks in Drought Stress Responses and Resistance in Plants; pp. 189–214. [PubMed] [Google Scholar]

101. Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324:1064–1068. doi:10.1126/science.1172408. [PubMed] [CrossRef] [Google Scholar]

102. Park S.-Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Tsz-Fung F.C. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324:1068–1071. doi:10.1126/science.1173041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Leung J., Giraudat J. Abscisic acid signal transduction. Annu. Rev. Plant Biol. 1998;49:199–222. doi:10.1146/annurev.arplant.49.1.199. [PubMed] [CrossRef] [Google Scholar]

104. Yoshida R., Hobo T., Ichimura K., Mizoguchi T., Takahashi F., Aronso J., Ecker J.R., Shinozaki K. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol. 2002;43:1473–1483. doi:10.1093/pcp/pcf188. [PubMed] [CrossRef] [Google Scholar]

105. Carswell G., Johnson C., Shillito R., Harms C. O-acetyl-salicylic acid promotes colony formation from protoplasts of an elite maize inbred. Plant Cell Rep. 1989;8:282–284. doi:10.1007/BF00274130. [PubMed] [CrossRef] [Google Scholar]

106. Eberhard S., Doubrava N., Marfa V., Mohnen D., Southwick A., Darvill A., Albersheim P. Pectic cell wall fragments regulate tobacco thin-cell-layer explant morphogenesis. Plant Cell. 1989;1:747–755. doi:10.1105/tpc.1.8.747. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Malamy J., Carr J.P., Klessig D.F., Raskin I. Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science. 1990;250:1002–1004. doi:10.1126/science.250.4983.1002. [PubMed] [CrossRef] [Google Scholar]

108. Arnao M.B., Hernández-Ruiz J. Melatonin and its relationship to plant hormones. Ann. Bot. 2017;121:195–207. doi:10.1093/aob/mcx114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. doi:10.1186/s12870-016-0771-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Dubois M., Van den Broeck L., Inzé D. The pivotal role of ethylene in plant growth. Trends Plant Sci. 2018;23:313–323. doi:10.1016/j.tplants.2018.01.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Klay I., Gouia S., Liu M., Mila I., Khoudi H., Bernadac A., Bouzayen M., Pirrello J. Ethylene Response Factors (ERF) are differentially regulated by different abiotic stress types in tomato plants. Plant Sci. 2018;274:137–145. doi:10.1016/j.plantsci.2018.05.023. [PubMed] [CrossRef] [Google Scholar]

112. Duku C., Zwart S.J., Hein L. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS ONE. 2018;13:e0192642. doi:10.1371/journal.pone.0192642. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Marcinkowski P., Piniewski M. Effect of climate change on sowing and harvest dates of spring barley and maize in Poland. Int. Agrophys. 2018;32:265–271. doi:10.1515/intag-2017-0015. [CrossRef] [Google Scholar]

114. Teixeira E.I., de Ruiter J., Ausseil A.-G., Daigneault A., Johnstone P., Holmes A., Tait A., Ewert F. Adapting crop rotations to climate change in regional impact modelling assessments. Sci. Total Environ. 2018;616:785–795. doi:10.1016/j.scitotenv.2017.10.247. [PubMed] [CrossRef] [Google Scholar]

115. Deligios P.A., Chergia A.P., Sanna G., Solinas S., Todde G., Narvarte L., Ledda L. Climate change adaptation and water saving by innovative irrigation management applied on open field globe artichoke. Sci. Total Environ. 2019;649:461–472. doi:10.1016/j.scitotenv.2018.08.349. [PubMed] [CrossRef] [Google Scholar]

116. Ali A., Erenstein O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017;16:183–194. doi:10.1016/j.crm.2016.12.001. [CrossRef] [Google Scholar]

117. Battisti R., Sentelhas P.C., Parker P.S., Nendel C., Gil M.D.S., Farias J.R., Basso C.J. Assessment of crop-management strategies to improve soybean resilience to climate change in Southern Brazil. Crop Pasture Sci. 2018;69:154–162. doi:10.1071/CP17293. [CrossRef] [Google Scholar]

118. Henderson B., Cacho O., Thornton P., van Wijk M., Herrero M. The economic potential of residue management and fertilizer use to address climate change impacts on mixed smallholder farmers in Burkina Faso. Agric. Syst. 2018;167:195–205. doi:10.1016/j.agsy.2018.09.012. [CrossRef] [Google Scholar]

119. Blum A. Plant Breeding for Stress Environments: 0. CRC Press; Boca Raton, FL, USA: 2018. [CrossRef] [Google Scholar]

120. Raza A., Mehmood S.S., Ashraf F., Khan R.S.A. Genetic diversity analysis of Brassica species using PCR-based SSR markers. Gesunde Pflanzen. 2018:1–7. doi:10.1007/s10343-018-0435-y. [CrossRef] [Google Scholar]

121. Raza A., Shaukat H., Ali Q., Habib M. Assessment of RAPD markers to analyse the genetic diversity among sunflower (Helianthus annuus L.) genotypes. Turk. J. Agric. Food Sci. Technol. 2018;6:107–111. doi:10.24925/turjaf.v6i1.107-111.1710. [CrossRef] [Google Scholar]

122. Lopes M.S., El-Basyoni I., Baenziger P.S., Singh S., Royo C., Ozbek K., Aktas H., Ozer E., Ozdemir F., Manickavelu A. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015;66:3477–3486. doi:10.1093/jxb/erv122. [PubMed] [CrossRef] [Google Scholar]

123. Stinchcombe J.R., Hoekstra H.E. Combining population genomics and quantitative genetics: Finding the genes underlying ecologically important traits. Heredity. 2008;100:158. doi:10.1038/sj.hdy.6800937. [PubMed] [CrossRef] [Google Scholar]

124. Keurentjes J.J., Koornneef M., Vreugdenhil D. Quantitative genetics in the age of omics. Curr. Opin. Plant Biol. 2008;11:123–128. doi:10.1016/j.pbi.2008.01.006. [PubMed] [CrossRef] [Google Scholar]

125. Bevan M., Waugh R. Applying Plant Genomics to Crop Improvement. BioMed Central; London, UK: 2007. [PMC free article] [PubMed] [Google Scholar]

126. Des Marais D.L., Hernandez K.M., Juenger T.E. Genotype-by-environment interaction and plasticity: Exploring genomic responses of plants to the abiotic environment. Annu. Rev. Ecol. Evol. Syst. 2013;44:5–29. doi:10.1146/annurev-ecolsys-110512-135806. [CrossRef] [Google Scholar]

127. Roy S.J., Tucker E.J., Tester M. Genetic analysis of abiotic stress tolerance in crops. Curr. Opin. Plant Biol. 2011;14:232–239. doi:10.1016/j.pbi.2011.03.002. [PubMed] [CrossRef] [Google Scholar]

128. Kole C., Muthamilarasan M., Henry R., Edwards D., Sharma R., Abberton M., Batley J., Bentley A., Blakeney M., Bryant J. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects. Front. Plant Sci. 2015;6:563. doi:10.3389/fpls.2015.00563. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Collins N.C., Tardieu F., Tuberosa R. Quantitative trait loci and crop performance under abiotic stress: Where do we stand? Plant Physiol. 2008;147:469–486. doi:10.1104/pp.108.118117. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Wani S.H., Choudhary M., Kumar P., Akram N.A., Surekha C., Ahmad P., Gosal S.S. Biotechnologies of Crop Improvement. Volume 3. Springer; Berlin/Heidelberg, Germany: 2018. Marker-Assisted Breeding for Abiotic Stress Tolerance in Crop Plants; pp. 1–23. [Google Scholar]

131. Da Silva Dias J.C. Molecular Approaches to Genetic Diversity. InTech; London, UK: 2015. Biodiversity and Plant Breeding as Tools for Harmony Between Modern Agriculture Production and the Environment. [CrossRef] [Google Scholar]

132. D’Agostino N., Tripodi P. NGS-based genotyping, high-throughput phenotyping and genome-wide association studies laid the foundations for next-generation breeding in horticultural crops. Diversity. 2017;9:38. doi:10.3390/d9030038. [CrossRef] [Google Scholar]

133. Kearsey M., Farquhar A. QTL analysis in plants; where are we now? Heredity. 1998;80:137. doi:10.1046/j.1365-2540.1998.00500.x. [PubMed] [CrossRef] [Google Scholar]

134. Yu H., Xie W., Wang J., Xing Y., Xu C., Li X., Xiao J., Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS ONE. 2011;6:e17595. [PMC free article] [PubMed] [Google Scholar]

135. Sehgal D., Singh R., Rajpal V.R. Molecular Breeding for Sustainable Crop Improvement. Springer; Berlin/Heidelberg, Germany: 2016. Quantitative trait loci mapping in plants: Concepts and approaches; pp. 31–59. [Google Scholar]

136. Araus J.L., Cairns J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014;19:52–61. doi:10.1016/j.tplants.2013.09.008. [PubMed] [CrossRef] [Google Scholar]

137. Pikkuhookana P., Sillanpää M. Combined linkage disequilibrium and linkage mapping: Bayesian multilocus approach. Heredity. 2014;112:351. doi:10.1038/hdy.2013.111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Haley S.D., Johnson J.J., Peairs F.B., Quick J.S., Stromberger J.A., Clayshulte S.R., Butler J.D., Rudolph J.B., Seabourn B.W., Bai G. Registration of ‘Ripper’wheat. J. Plant Regist. 2007;1:1–6. doi:10.3198/jpr2006.10.0689crc. [CrossRef] [Google Scholar]

139. Badu-Apraku B., Yallou C. Registration of Striga-resistant and drought-tolerant tropical early maize populations TZE-W Pop DT STR C 4 and TZE-Y Pop DT STR C 4. J. Plant Regist. 2009;3:86–90. doi:10.3198/jpr2008.06.0356crg. [CrossRef] [Google Scholar]

140. Merchuk-Ovnat L., Barak V., Fahima T., Ordon F., Lidzbarsky G.A., Krugman T., Saranga Y. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front. Plant Sci. 2016;7:452. doi:10.3389/fpls.2016.00452. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Kochevenko A., Jiang Y., Seiler C., Surdonja K., Kollers S., Reif J.C., Korzun V., Graner A. Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress. BMC Plant Biol. 2018;18:106. doi:10.1186/s12870-018-1323-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Dixit S., Singh A., Sandhu N., Bhandari A., Vikram P., Kumar A. Combining drought and submergence tolerance in rice: Marker-assisted breeding and QTL combination effects. Mol. Breed. 2017;37:143. doi:10.1007/s11032-017-0737-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Tahmasebi S., Heidari B., Pakniyat H., McIntyre C.L. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.) Genome. 2016;60:26–45. doi:10.1139/gen-2016-0017. [PubMed] [CrossRef] [Google Scholar]

144. Manolio T.A. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 2010;363:166–176. doi:10.1056/NEJMra0905980. [PubMed] [CrossRef] [Google Scholar]

145. Bush W.S., Moore J.H. Genome-wide association studies. PLoS Comput. Biol. 2012;8:e1002822. doi:10.1371/journal.pcbi.1002822. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Mousavi-Derazmahalleh M., Bayer P.E., Hane J.K., Babu V., Nguyen H.T., Nelson M.N., Erskine W., Varshney R.K., Papa R., Edwards D. Adapting legume crops to climate change using genomic approaches. Plant Cell Environ. 2018;42:6–19. doi:10.1111/pce.13203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Thoen M.P., Davila Olivas N.H., Kloth K.J., Coolen S., Huang P.P., Aarts M.G., Bac-Molenaar J.A., Bakker J., Bouwmeester H.J., Broekgaarden C. Genetic architecture of plant stress resistance: Multi-trait genome-wide association mapping. New Phytol. 2017;213:1346–1362. doi:10.1111/nph.14220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Wan H., Chen L., Guo J., Li Q., Wen J., Yi B., Ma C., Tu J., Fu T., Shen J. Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.) Front. Plant Sci. 2017;8:593. doi:10.3389/fpls.2017.00593. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Lafarge T., Bueno C., Frouin J., Jacquin L., Courtois B., Ahmadi N. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS ONE. 2017;12:e0171254. doi:10.1371/journal.pone.0171254. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Verslues P.E., Lasky J.R., Juenger T.E., Liu T.-W., Kumar M.N. Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. Plant Physiol. 2014;164:144–159. doi:10.1104/pp.113.224014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Ashraf M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 2009;27:84–93. doi:10.1016/j.biotechadv.2008.09.003. [PubMed] [CrossRef] [Google Scholar]

152. Qin P., Lin Y., Hu Y., Liu K., Mao S., Li Z., Wang J., Liu Y., Wei Y., Zheng Y. Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genet. Mol. Biol. 2016;39:398–407. doi:10.1590/1678-4685-GMB-2015-0232. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Kumar V., Singh A., Mithra S.A., Krishnamurthy S., Parida S.K., Jain S., Tiwari K.K., Kumar P., Rao A.R., Sharma S. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa) DNA Res. 2015;22:133–145. doi:10.1093/dnares/dsu046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Chopra R., Burow G., Burke J.J., Gladman N., Xin Z. Genome-wide association analysis of seedling traits in diverse Sorghum germplasm under thermal stress. BMC Plant Biol. 2017;17:12. doi:10.1186/s12870-016-0966-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

155. Chen J., Chopra R., Hayes C., Morris G., Marla S., Burke J., Xin Z., Burow G. Genome-wide association study of developing leaves’ heat tolerance during vegetative growth stages in a sorghum association panel. Plant Genome. 2017;10:1–15. doi:10.3835/plantgenome2016.09.0091. [PubMed] [CrossRef] [Google Scholar]

156. Kumar S., Muthusamy S.K., Mishra C.N., Gupta V., Venkatesh K. Advanced Molecular Plant Breeding: Meeting the Challenge of Food Security. CRC Press; Boca Raton, FL, USA: 2018. Importance of Genomic Selection in Crop Improvement and Future Prospects; p. 275. [Google Scholar]

157. Burgueño J., de los Campos G., Weigel K., Crossa J. Genomic prediction of breeding values when modeling genotype× environment interaction using pedigree and dense molecular markers. Crop Sci. 2012;52:707–719. doi:10.2135/cropsci2011.06.0299. [CrossRef] [Google Scholar]

158. Jarquín D., Crossa J., Lacaze X., Du Cheyron P., Daucourt J., Lorgeou J., Piraux F., Guerreiro L., Pérez P., Calus M. A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Appl. Genet. 2014;127:595–607. doi:10.1007/s00122-013-2243-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Lopez-Cruz M., Crossa J., Bonnett D., Dreisigacker S., Poland J., Jannink J.-L., Singh R.P., Autrique E., de los Campos G. Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model. G3: Genes Genom. Genet. 2015;5:569–582. doi:10.1534/g3.114.016097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Cuevas J., Crossa J., Montesinos-López O.A., Burgueño J., Pérez-Rodríguez P., de los Campos G. Bayesian genomic prediction with genotype× environment interaction kernel models. G3: Genes. Genom. Genet. 2017;7:41–53. [PMC free article] [PubMed] [Google Scholar]

161. Rutkoski J.E., Crain J., Poland J., Sorrells M.E. Genomic Selection for Crop Improvement. Springer; Berlin/Heidelberg, Germany: 2017. Genomic Selection for Small Grain Improvement; pp. 99–130. [Google Scholar]

162. Dong H., Wang R., Yuan Y., Anderson J., Pumphrey M., Zhang Z., Chen J. Evaluation of the potential for genomic selection to improve spring wheat resistance to Fusarium head blight in the Pacific Northwest. Front. Plant Sci. 2018;9:911. doi:10.3389/fpls.2018.00911. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Crain J., Mondal S., Rutkoski J., Singh R.P., Poland J. Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome. 2018;11:1–14. doi:10.3835/plantgenome2017.05.0043. [PubMed] [CrossRef] [Google Scholar]

164. Reynolds M., Tattaris M., Cossani C.M., Ellis M., Yamaguchi-Shinozaki K., Saint Pierre C. Advances in Wheat Genetics: From Genome to Field. Springer; Berlin/Heidelberg, Germany: 2015. Exploring genetic resources to increase adaptation of wheat to climate change; pp. 355–368. [Google Scholar]

165. Shah S.H., Ali S., Hussain Z., Jan S.A., Ali G.M. Genetic improvement of tomato (Solanum lycopersicum) with AtDREB1A dene for cold stress tolerance using optimized agrobacterium-mediated transformation system. Int. J. Agric. Biol. 2016;18:471–782. doi:10.17957/IJAB/15.0107. [CrossRef] [Google Scholar]

166. Nejat N., Mantri N. Plant immune system: Crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr. Issues Mol. Biol. 2017;23:1–16. doi:10.21775/cimb.023.001. [PubMed] [CrossRef] [Google Scholar]

167. Riechmann J.L., Meyerowitz E.M. The AP2/EREBP family of plant transcription factors. Biol. Chem. 1998;379:633–646. [PubMed] [Google Scholar]

168. Licausi F., Giorgi F.M., Zenoni S., Osti F., Pezzotti M., Perata P. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genom. 2010;11:719. doi:10.1186/1471-2164-11-719. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Sharoni A.M., Nuruzzaman M., Satoh K., Shimizu T., Kondoh H., Sasaya T., Choi I.-R., Omura T., Kikuchi S. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 2010;52:344–360. doi:10.1093/pcp/pcq196. [PubMed] [CrossRef] [Google Scholar]

170. Stockinger E.J., Gilmour S.J., Thomashow M.F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA. 1997;94:1035–1040. doi:10.1073/pnas.94.3.1035. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Agarwal M., Hao Y., Kapoor A., Dong C.-H., Fujii H., Zheng X., Zhu J.-K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 2006;281:37636–37645. doi:10.1074/jbc.M605895200. [PubMed] [CrossRef] [Google Scholar]

172. Lata C., Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 2011;62:4731–4748. doi:10.1093/jxb/err210. [PubMed] [CrossRef] [Google Scholar]

173. Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta Gene Regul. Mech. 2012;1819:86–96. doi:10.1016/j.bbagrm.2011.08.004. [PubMed] [CrossRef] [Google Scholar]

174. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998;10:1391–1406. doi:10.1105/tpc.10.8.1391. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Lucas S., Durmaz E., Akpınar B.A., Budak H. The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol. Biochem. 2011;49:346–351. doi:10.1016/j.plaphy.2011.01.016. [PubMed] [CrossRef] [Google Scholar]

176. Sakuma Y., Liu Q., Dubouzet J.G., Abe H., Shinozaki K., Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 2002;290:998–1009. doi:10.1006/bbrc.2001.6299. [PubMed] [CrossRef] [Google Scholar]

177. Gilmour S.J., Zarka D.G., Stockinger E.J., Salazar M.P., Houghton J.M., Thomashow M.F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998;16:433–442. doi:10.1046/j.1365-313x.1998.00310.x. [PubMed] [CrossRef] [Google Scholar]

178. Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O., Thomashow M.F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 1998;280:104–106. doi:10.1126/science.280.5360.104. [PubMed] [CrossRef] [Google Scholar]

179. Jaglo K.R., Kleff S., Amundsen K.L., Zhang X., Haake V., Zhang J.Z., Deits T., Thomashow M.F. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved inbrassica napus and other plant species. Plant Physiol. 2001;127:910–917. doi:10.1104/pp.010548. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 2006;47:141–153. doi:10.1093/pcp/pci230. [PubMed] [CrossRef] [Google Scholar]

181. Hsieh T.-H., Lee J.-T., Yang P.-T., Chiu L.-H., Charng Y.-Y., Wang Y.-C., Chan M.-T. Heterology expression of the ArabidopsisC-repeat/dehydration response element binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 2002;129:1086–1094. doi:10.1104/pp.003442. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. Kasuga M., Miura S., Shinozaki K., Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 2004;45:346–350. doi:10.1093/pcp/pch037. [PubMed] [CrossRef] [Google Scholar]

183. Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J. 2003;33:751–763. doi:10.1046/j.1365-313X.2003.01661.x. [PubMed] [CrossRef] [Google Scholar]

184. Qin F., Sakuma Y., Li J., Liu Q., Li Y.-Q., Shinozaki K., Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 2004;45:1042–1052. doi:10.1093/pcp/pch118. [PubMed] [CrossRef] [Google Scholar]

185. Qin F., Kakimoto M., Sakuma Y., Maruyama K., Osakabe Y., Tran L.S.P., Shinozaki K., Yamaguchi-Shinozaki K. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 2007;50:54–69. doi:10.1111/j.1365-313X.2007.03034.x. [PubMed] [CrossRef] [Google Scholar]

186. Chen M., Wang Q.-Y., Cheng X.-G., Xu Z.-S., Li L.-C., Ye X.-G., Xia L.-Q., Ma Y.-Z. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 2007;353:299–305. doi:10.1016/j.bbrc.2006.12.027. [PubMed] [CrossRef] [Google Scholar]

187. Mallikarjuna G., Mallikarjuna K., Reddy M., Kaul T. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.) Biotechnol. Lett. 2011;33:1689–1697. doi:10.1007/s10529-011-0620-x. [PubMed] [CrossRef] [Google Scholar]

188. Dietz K.-J., Vogel M.O., Viehhauser A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma. 2010;245:3–14. doi:10.1007/s00709-010-0142-8. [PubMed] [CrossRef] [Google Scholar]

189. Hao D., Ohme-Takagi M., Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J. Biol. Chem. 1998;273:26857–26861. doi:10.1074/jbc.273.41.26857. [PubMed] [CrossRef] [Google Scholar]

190. Xu Z.-S., Chen M., Li L.-C., Ma Y.-Z. Functions of the ERF transcription factor family in plants. Botany. 2008;86:969–977. doi:10.1139/B08-041. [CrossRef] [Google Scholar]

191. Liang H., Lu Y., Liu H., Wang F., Xin Z., Zhang Z. A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses. J. Exp. Bot. 2008;59:3111–3120. doi:10.1093/jxb/ern165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Zhu X., Qi L., Liu X., Cai S., Xu H., Huang R., Li J., Wei X., Zhang Z. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol. 2014;164:1499–1514. doi:10.1104/pp.113.229575. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

193. Zhang G., Chen M., Li L., Xu Z., Chen X., Guo J., Ma Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 2009;60:3781–3796. doi:10.1093/jxb/erp214. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

194. Baldoni E., Genga A., Cominelli E. Plant MYB transcription factors: Their role in drought response mechanisms. Int. J. Mol. Sci. 2015;16:15811–15851. doi:10.3390/ijms160715811. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Li C., Ng C.K.-Y., Fan L.-M. MYB transcription factors, active players in abiotic stress signaling. Environ. Exp. Bot. 2015;114:80–91. doi:10.1016/j.envexpbot.2014.06.014. [CrossRef] [Google Scholar]

196. Ambawat S., Sharma P., Yadav N.R., Yadav R.C. MYB transcription factor genes as regulators for plant responses: An overview. Physiol. Mol. Biol. Plants. 2013;19:307–321. doi:10.1007/s12298-013-0179-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Cominelli E., Galbiati M., Vavasseur A., Conti L., Sala T., Vuylsteke M., Leonhardt N., Dellaporta S.L., Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr. Biol. 2005;15:1196–1200. doi:10.1016/j.cub.2005.05.048. [PubMed] [CrossRef] [Google Scholar]

198. Liang Y.-K., Dubos C., Dodd I.C., Holroyd G.H., Hetherington A.M., Campbell M.M. AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr. Biol. 2005;15:1201–1206. doi:10.1016/j.cub.2005.06.041. [PubMed] [CrossRef] [Google Scholar]

199. Jung C., Seo J.S., Han S.W., Koo Y.J., Kim C.H., Song S.I., Nahm B.H., Do Choi Y., Cheong J.-J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol. 2008;146:623–635. doi:10.1104/pp.107.110981. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Seo P.J., Xiang F., Qiao M., Park J.-Y., Lee Y.N., Kim S.-G., Lee Y.-H., Park W.J., Park C.-M. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol. 2009;151:275–289. doi:10.1104/pp.109.144220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Seo P.J., Lee S.B., Suh M.C., Park M.-J., Go Y.S., Park C.-M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell. 2011 doi:10.1105/tpc.111.083485. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Yang A., Dai X., Zhang W.-H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J. Exp. Bot. 2012;63:2541–2556. doi:10.1093/jxb/err431. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Liao Y., Zou H.-F., Wang H.-W., Zhang W.-K., Ma B., Zhang J.-S., Chen S.-Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res. 2008;18:1047. doi:10.1038/cr.2008.280. [PubMed] [CrossRef] [Google Scholar]

204. Cao Z.-H., Zhang S.-Z., Wang R.-K., Zhang R.-F., Hao Y.-J. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants. PLoS ONE. 2013;8:e69955. doi:10.1371/journal.pone.0069955. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

205. Chen Y., Cao Y., Wang L., Li L., Yang J., Zou M. Identification of MYB transcription factor genes and their expression during abiotic stresses in maize. Biol. Plant. 2017;62:1–9. doi:10.1007/s10535-017-0756-1. [CrossRef] [Google Scholar]

206. Wang R.K., Cao Z.H., Hao Y.J. Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiol. Plant. 2014;150:76–87. doi:10.1111/ppl.12069. [PubMed] [CrossRef] [Google Scholar]

207. Zhang Z., Liu X., Wang X., Zhou M., Zhou X., Ye X., Wei X. An R2R3 MYB transcription factor in wheat, Ta PIMP 1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense-and stress-related genes. New Phytol. 2012;196:1155–1170. doi:10.1111/j.1469-8137.2012.04353.x. [PubMed] [CrossRef] [Google Scholar]

208. Liu H., Zhou X., Dong N., Liu X., Zhang H., Zhang Z. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Funct. Integr. Genom. 2011;11:431–443. doi:10.1007/s10142-011-0228-1. [PubMed] [CrossRef] [Google Scholar]

209. Muthamilarasan M., Bonthala V.S., Khandelwal R., Jaishankar J., Shweta S., Nawaz K., Prasad M. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front. Plant Sci. 2015;6:910. doi:10.3389/fpls.2015.00910. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. phu*kan U.J., Jeena G.S., Shukla R.K. WRKY transcription factors: Molecular regulation and stress responses in plants. Front. Plant Sci. 2016;7:760. doi:10.3389/fpls.2016.00760. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Wu X., Shiroto Y., Kish*tani S., Ito Y., Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep. 2009;28:21–30. doi:10.1007/s00299-008-0614-x. [PubMed] [CrossRef] [Google Scholar]

212. Zhou Q.Y., Tian A.G., Zou H.F., Xie Z.M., Lei G., Huang J., Wang C.M., Wang H.W., Zhang J.S., Chen S.Y. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol. J. 2008;6:486–503. doi:10.1111/j.1467-7652.2008.00336.x. [PubMed] [CrossRef] [Google Scholar]

213. Niu C.F., Wei W., Zhou Q.Y., Tian A.G., Hao Y.J., Zhang W.K., Ma B., Lin Q., Zhang Z.B., Zhang J.S. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ. 2012;35:1156–1170. doi:10.1111/j.1365-3040.2012.02480.x. [PubMed] [CrossRef] [Google Scholar]

214. He G.-H., Xu J.-Y., Wang Y.-X., Liu J.-M., Li P.-S., Chen M., Ma Y.-Z., Xu Z.-S. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol. 2016;16:116. doi:10.1186/s12870-016-0806-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. Li H., Gao Y., Xu H., Dai Y., Deng D., Chen J. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul. 2013;70:207–216. doi:10.1007/s10725-013-9792-9. [CrossRef] [Google Scholar]

216. Fan Q., Song A., Jiang J., Zhang T., Sun H., Wang Y., Chen S., Chen F. CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE. 2016;11:e0150572. doi:10.1371/journal.pone.0150572. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

217. Nuruzzaman M., Sharoni A.M., Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 2013;4:248. doi:10.3389/fmicb.2013.00248. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

218. Banerjee A., Roychoudhury A. WRKY proteins: Signaling and regulation of expression during abiotic stress responses. Sci. World J. 2015;2015:1–17. doi:10.1155/2015/807560. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

219. Nuruzzaman M., Manimekalai R., Sharoni A.M., Satoh K., Kondoh H., Ooka H., Kikuchi S. Genome-wide analysis of NAC transcription factor family in rice. Gene. 2010;465:30–44. doi:10.1016/j.gene.2010.06.008. [PubMed] [CrossRef] [Google Scholar]

220. Shiriga K., Sharma R., Kumar K., Yadav S.K., Hossain F., Thirunavukkarasu N. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene. 2014;2:407–417. doi:10.1016/j.mgene.2014.05.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

221. Le D.T., Nishiyama R., Watanabe Y., Mochida K., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S.P. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. 2011;18:263–276. doi:10.1093/dnares/dsr015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

222. Jiang Y., Deyholos M.K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 2006;6:25. doi:10.1186/1471-2229-6-25. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

223. Fang Y., You J., Xie K., Xie W., Xiong L. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol. Genet. Genom. 2008;280:547–563. doi:10.1007/s00438-008-0386-6. [PubMed] [CrossRef] [Google Scholar]

224. Lu M., Zhang D.-F., Shi Y.-S., Song Y.-C., Wang T.-Y., Li Y. Expression of SbSNAC1, a NAC transcription factor from sorghum, confers drought tolerance to transgenic Arabidopsis. Plant Cell Tissue Organ. Cult. 2013;115:443–455. doi:10.1007/s11240-013-0375-2. [CrossRef] [Google Scholar]

225. Zheng X., Chen B., Lu G., Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem. Biophys. Res. Commun. 2009;379:985–989. doi:10.1016/j.bbrc.2008.12.163. [PubMed] [CrossRef] [Google Scholar]

226. Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q., Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA. 2006;103:12987–12992. doi:10.1073/pnas.0604882103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

227. Liu W., Yuan J.S., Stewart C.N., Jr. Advanced genetic tools for plant biotechnology. Nat. Rev. Genet. 2013;14:781. doi:10.1038/nrg3583. [PubMed] [CrossRef] [Google Scholar]

228. Abdelrahman M., El-Sayed M., Sato S., Hirakawa H., Ito S.-I., Tanaka K., Mine Y., Sugiyama N., Suzuki M., Yamauchi N. RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum—A. cepa monosomic addition lines. PLoS ONE. 2017;12:e0181784. doi:10.1371/journal.pone.0181784. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Flint-Garcia S.A. Genetics and consequences of crop domestication. J. Agric. Food Chem. 2013;61:8267–8276. doi:10.1021/jf305511d. [PubMed] [CrossRef] [Google Scholar]

230. Abdelrahman M., Jogaiah S., Burritt D.J., Tran L.S.P. Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ. 2018;41:1972–1983. doi:10.1111/pce.13123. [PubMed] [CrossRef] [Google Scholar]

231. Taranto F., Nicolia A., Pavan S., De Vita P., D’Agostino N. Biotechnological and digital revolution for climate-smart plant breeding. Agronomy. 2018;8:277. doi:10.3390/agronomy8120277. [CrossRef] [Google Scholar]

232. Kamburova V.S., Nikitina E.V., Shermatov S.E., Buriev Z.T., Kumpatla S.P., Emani C., Abdurakhmonov I.Y. Genome editing in plants: An overview of tools and applications. Int. J. Agron. 2017;2017:1–15. doi:10.1155/2017/7315351. [CrossRef] [Google Scholar]

233. Zhu C., Bortesi L., Baysal C., Twyman R.M., Fischer R., Capell T., Schillberg S., Christou P. Characteristics of genome editing mutations in cereal crops. Trends Plant Sci. 2017;22:38–52. doi:10.1016/j.tplants.2016.08.009. [PubMed] [CrossRef] [Google Scholar]

234. Abdelrahman M., Al-Sadi A.M., Pour-Aboughadareh A., Burritt D.J., Tran L.-S.P. Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol. Biochem. 2018;131:31–36. doi:10.1016/j.plaphy.2018.03.012. [PubMed] [CrossRef] [Google Scholar]

235. Hussain B., Lucas S.J., Budak H. CRISPR/Cas9 in plants: At play in the genome and at work for crop improvement. Brief. Funct. Genom. 2018;17:319–328. doi:10.1093/bfgp/ely016. [PubMed] [CrossRef] [Google Scholar]

236. Lino C.A., Harper J.C., Carney J.P., Timlin J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018;25:1234–1257. doi:10.1080/10717544.2018.1474964. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Larochelle S. Genomics: CRISPR–Cas Goes RNA. Nat. Methods. 2018;15:312. doi:10.1038/nmeth.4681. [CrossRef] [Google Scholar]

238. Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., Venkataraman G. CRISPR for crop improvement: An update review. Front. Plant Sci. 2018;9:985. doi:10.3389/fpls.2018.00985. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

239. Haque E., Taniguchi H., Hassan M.M., Bhowmik P., Karim M.R., Śmiech M., Zhao K., Rahman M., Islam T. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges. Front. Plant Sci. 2018;9:617. doi:10.3389/fpls.2018.00617. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

240. Khurshid H., Jan S.A., Shinwari Z.K., Jamal M., Shah S.H. An Era of CRISPR/Cas9 Mediated Plant Genome Editing. Curr. Issues Mol. Biol. 2017;26:47–54. [PubMed] [Google Scholar]

241. Kim D., Alptekin B., Budak H. CRISPR/Cas9 genome editing in wheat. Funct. Integr. Genom. 2018;18:31–41. doi:10.1007/s10142-017-0572-x. [PubMed] [CrossRef] [Google Scholar]

242. Ou W., Mao X., Huang C., Tie W., Yan Y., Ding Z., Wu C., Xia Z., Wang W., Zhou S. Genome-wide identification and expression analysis of the KUP family under abiotic stress in cassava (Manihot esculenta Crantz) Front. Physiol. 2018;9:17. doi:10.3389/fphys.2018.00017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Ye J., Yang H., Shi H., Wei Y., Tie W., Ding Z., Yan Y., Luo Y., Xia Z., Wang W. The MAPKKK gene family in cassava: Genome-wide identification and expression analysis against drought stress. Sci. Rep. 2017;7:14939. doi:10.1038/s41598-017-13988-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

244. Xu R., Yang Y., Qin R., Li H., Qiu C., Li L., Wei P., Yang J. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J. Genet. Genom. 2016;43:529–532. doi:10.1016/j.jgg.2016.07.003. [PubMed] [CrossRef] [Google Scholar]

245. Wang W., Pan Q., He F., Akhunova A., Chao S., Trick H., Akhunov E. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J. 2018;1:65–74. doi:10.1089/crispr.2017.0010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

246. Sánchez-León S., Gil-Humanes J., Ozuna C.V., Giménez M.J., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018;16:902–910. doi:10.1111/pbi.12837. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

247. Wang L., Chen L., Li R., Zhao R., Yang M., Sheng J., Shen L. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J. Agric. Food Chem. 2017;65:8674–8682. doi:10.1021/acs.jafc.7b02745. [PubMed] [CrossRef] [Google Scholar]

248. Chen Klap E.Y., Bolger A.M., Arazi T., Gupta S.K., Shabtai S., Usadel B., Salts Y., Barg R. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol. J. 2017;15:634. doi:10.1111/pbi.12662. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

249. Shen C., Que Z., Xia Y., Tang N., Li D., He R., Cao M. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J. Plant Biol. 2017;60:539–547. doi:10.1007/s12374-016-0400-1. [CrossRef] [Google Scholar]

250. Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 2017;35:441. doi:10.1038/nbt.3833. [PubMed] [CrossRef] [Google Scholar]

Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review (2024)

FAQs

What are the 4 adaptation strategies for climate change? ›

Erecting buildings and infrastructure that is safer and more sustainable. Replanting forests and restoring damaged ecosystems. Diversifying crops so that they are better able to adapt to changing climates. Investigating and developing innovative solutions to prevent and manage natural catastrophes.

How is climate change affecting our crops? ›

More extreme temperature and precipitation can prevent crops from growing. Extreme events, especially floods and droughts, can harm crops and reduce yields.

What are the impacts of climate change review? ›

In addition to changing temperature and precipitation patterns and increasing the frequency and intensity of extreme weather events, these changes can also lead to shifts in the distribution and severity of pests and diseases, affecting crop yields and quality.

What are the climate adaptation strategies for agriculture? ›

ANSWER: Wind machines, overhead irrigation, choosing plant varieties appropriately, and siting orchards in appropriate locations. Diversified markets and diversification in crops grown increase resilience. Crop insurance decreases risk.

What are two examples of adaptation strategies to reverse climate change? ›

Cities and local communities around the world have been focusing on solving their own climate problems. They are working to build flood defenses, plan for heat waves and higher temperatures, install better-draining pavements to deal with floods and stormwater, and improve water storage and use.

What three methods of adaptation can be used to reduce the impact of climate change? ›

It identifies three main categories (structural and physical options, social options and institutional options), further divided in sub-categories. Other developing approaches to adaptation options, considering “Representative Key Risks” and “System Transitions” can be found in the IPCC AR6 (see.

What is the greatest threat to agriculture in the next 10 years? ›

The greatest danger: extreme droughts supercharged by climate change, affecting multiple grain-growing areas simultaneously, causing “food shock” events that could trigger food prices spikes leading to mass starvation, war, and a severe global economic recession.

What are the positive effects of agriculture on the environment? ›

Pasture and cropland occupy around 50 percent of the Earth's habitable land and provide habitat and food for a multitude of species. When agricultural operations are sustainably managed, they can preserve and restore critical habitats, help protect watersheds, and improve soil health and water quality.

Which food systems are most vulnerable to climate change? ›

Senior Contributor. According to the latest update from the University of Notre Dame's Global Adaptation Initiative (ND-GAIN) Country Index, Caribbean food systems are among the most climate vulnerable in the world.

What are the 4 main impacts of climate change? ›

Impacts. Humans and wild animals face new challenges for survival because of climate change. More frequent and intense drought, storms, heat waves, rising sea levels, melting glaciers and warming oceans can directly harm animals, destroy the places they live, and wreak havoc on people's livelihoods and communities.

What are three major impacts of climate change? ›

We already see effects scientists predicted, such as the loss of sea ice, melting glaciers and ice sheets, sea level rise, and more intense heat waves. Scientists predict global temperature increases from human-made greenhouse gases will continue. Severe weather damage will also increase and intensify.

What are 2 major impacts of climate change? ›

Climate change affects all regions around the world. Polar ice shields are melting and the sea is rising. In some regions, extreme weather events and rainfall are becoming more common while others are experiencing more extreme heat waves and droughts. We need climate action now, or these impacts will only intensify.

Why are adaptation strategies important in agriculture? ›

Adaptation has three possible objectives: to reduce exposure to the risk of damage; to develop the capacity to cope with unavoidable damages; and to take advantage of new opportunities.

What is a climate adaptation strategy? ›

A strategy to ensure Western Australia's communities, environment and economy are resilient and continuously adapting to climate change in a forward-looking, fair and collaborative manner.

What is farming adaptation? ›

Adaptation actions and responses can simultaneously provide co-benefits towards multiple goals, such as: soil health improvement; water quality protection; wildlife habitat management; or greenhouse gas mitigation; and may or may not be distinguishable from on-farm practices already planned or underway.

What are the four adaptation approaches? ›

There are many adaptation strategies or options. They can help manage impacts and risks to people and nature. The four types of adaptation actions are infrastructural, institutional, behavioural and nature-based options.

What are the 4 aspects of climate change? ›

Increases in ocean temperatures, sea level, and acidity. Melting of glaciers and sea ice. Changes in the frequency, intensity, and duration of extreme weather events. Shifts in ecosystem characteristics, like the length of the growing season, timing of flower blooms, and migration of birds.

What are the 4 factors of climate change? ›

Geological records show that there have been a number of large variations in the Earth's climate. These have been caused by many natural factors, including changes in the sun, emissions from volcanoes, variations in Earth's orbit and levels of carbon dioxide (CO2).

Top Articles
Latest Posts
Article information

Author: Ray Christiansen

Last Updated:

Views: 6567

Rating: 4.9 / 5 (69 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Ray Christiansen

Birthday: 1998-05-04

Address: Apt. 814 34339 Sauer Islands, Hirtheville, GA 02446-8771

Phone: +337636892828

Job: Lead Hospitality Designer

Hobby: Urban exploration, Tai chi, Lockpicking, Fashion, Gunsmithing, Pottery, Geocaching

Introduction: My name is Ray Christiansen, I am a fair, good, cute, gentle, vast, glamorous, excited person who loves writing and wants to share my knowledge and understanding with you.